
Lecture Notes and Lab Problems on Numerical Methods

for

Methods in Computational Neuroscience

Arthur Sherman

Mathematical Research Branch

National Institute of Diabetes and Digestive and Kidney Diseases

National Institutes of Health

Bethesda, MD 20892

Mailing address for correspondence:

Arthur Sherman

BSA Bldg., Rm. 350

National Institutes of Health

Bethesda, MD 20892

E-mail: asherman@nih.gov

August, 1997



1 Preliminaries

1.1 Formulas from Calculus

The most important formula in applied mathematics is the Taylor series:

f(x� x

0

) =

1

X

i=0

f

i

(x

0

)

(x� x

0

)

i

i!

(1)

Another form:

f(x+ h) = f(x) + f

0

(x)h+ f

00

(x)

h

2

2

+ f

000

(x)

h

3

6

+ : : : (2)

This can be truncated to give a representation of f in the form of a polynomial:

f(x+ h) = f(x) + f

0

(x)h+ f

00

(�)

h

2

2

(3)

where x < � < x+h. If the series is truncated after one term one gets the Mean Value Theorem

of elementary calculus. An alternative way to write this is in Big Oh form,

f(x+ h) = f(x) + f

0

(x)h+O(h

2

); (4)

which means that the error due to truncating the series is some expression that goes to 0 as

fast as h

2

as h! 0. Equivalently, the error is < Ch

2

for some constant C when h is small.

The Taylor series is equivalent to the power series representation of functions:

e

x

= 1 + x+ x

2

+

x

3

6

+

x

4

24

+ : : : (5)

1

1� x

= 1 + x+ x

2

+ x

3

+ x

4

+ : : : (6)

The latter is the standard formula for the sum of a geometric series. Comparing Eqs. 2 and 5

we get a nifty formal expression for how to advance function values from x to x+ h in terms

of derivatives at x,

f(x+ h) = e

hD

f(x); (7)

where D is the di�erentiation operator.

1.2 Sources of Numerical Error

A good general reference is [6]. Precision means how many digits can be represented in the

computer. Since the number of digits is �nite in practice (although some programs like Math-

ematica [17] can perform operations in arbitrary precision) irrational numbers like

p

2 and

transcendental numbers like � and e cannot be exactly represented. Neither can repeating

decimals, like 1=3 in base 10. Finally, even innocent operations between exactly represented

rational numbers can lead to loss of precision. For example, in a hypothetical machine with

1



base 10 arithmetic and 4 decimal digits .5004e0 � .2000e1 is rounded to .1001e1, so the last

digit is incorrect.

Precision can be expressed in terms of the machine epsilon (�

mch

), the smallest number �

such that 1 + � > 1. 1 + � can = 1 computationally because of the need to line up the decimal

(or binary) point when adding oating point numbers. Our hypothetical machine adds .1000e1

and .4999e-4 as follows:

.1000|0000e1

.0000|4999e1

------------

.1000e1

where the digits to the right of the | are lost due to rounding. Thus, �

mch

� :5e � 4 or half

the last retained digit.

Typical workstations use base 2 and have a 32-bit word for single-precision real numbers,

and 64 bits for double-precision. Actually, double-precision has more than twice the precision

of single-precision because the number of bits devoted to the fractional part (as opposed to the

exponent) is more than doubled. Typical values are 22 bits for single-precision (�

mch

= 2

�23

=

1:2 � 10

�7

) and 51 bits for single-precision (�

mch

= 2

�52

= 2:2 � 10

�16

). The rule of thumb

is: always use double-precision on a 32-bit machine for numerical work. Cray supercomputers

have a 64-bit word size, so single-precision is �ne.

Accuracy means how close a computed answer is to the true answer. Obviously, the accu-

racy can be no better than the precision, but, as the above examples show, �nite precision can

lead to a loss of accuracy through round-o� error. In less extreme cases, adding or multiply-

ing two similar-sized numbers gives a relative error of O(�

mch

) which is considered acceptable

(because it is unavoidable).

Solving di�erential equations requires numerous iterated calculations, so the round-o� error

can accumulate. We will examine this later. Generally, however, as long as the round-o� error

is not ampli�ed by the algorithm, it is not a big problem. A numerical method which does not

amplify errors is called stable, and we will consider the stability of several algorithms later.

There is one case where round-o� can be important: when two nearly equal numbers are

subtracted there is a drastic loss of precision call catastrophic cancellation. For example, .1111

� .1110 = .0001. Four digits of precision are reduced to 1. This comes up in using the quadratic

formula, to �nd a root that is near 0. For example,

x =

�b�

p

b

2

� 4ac

2a

(8)

when c is small. This can be avoided by using the mathematically equivalent, but numerically

superior, formula

x =

�2c

b+

p

b

2

� 4ac

(9)

Another example is computing e

�5

with the power series of Eq. 5. The terms of the series

alternate in sign, so massive cancellation is needed to yield a small number. A better method

is to compute 1=e

5

.

2



The above are examples of ruining a good problem with a bad method. The �xes are

problem-dependent. Sometimes, however, a problem is just intrinsically hard to solve because

it is very sensitive to error (ill-conditioned). An example is �nding the double root of x

2

�4x+4.

A small error O(�) in computing the coe�cients leads to a big error O(�

0:5

) in the solution

because the curve is tangent to the x-axis. Another example is trying to solve a system of

linear equations whose matrix is nearly singular. This is geometrically equivalent to �nding

the intersection of lines (hyperplanes) that are nearly parallel. One cannot cure such cases in

general; the best one can do is be aware of them.

In the case of solving Ax = b, one can estimate how ill-conditioned the problem is in the

following way. With a suitably de�ned norm [6] k � k to measure the size of A,

kAxk � kAkkxk

The natural way to test a numerical solution, x̂, is to plug it into the equation and calculate

^

b = Ax̂ and the residual kb�

^

bk. We will be happy if the residual is small, but what does this

tell us about the error, kx� x̂k? Using

kx� x̂k � kA

�1

kkb�

^

bk and kbk � kAkkxk

we get the estimate

kx� x̂k

kxk

� kAkkA

�1

k

kb�

^

bk

kbk

;

so we de�ne the condition number of A

cond(A) = kAkkA

�1

k: (10)

If cond(A) is large, the error may be large even though the residual is small.

A more serious way that �nite resources (computing budget; disk space) and �nite time

(lifetime; time to get tenure; time to �nish Ph. D. thesis) contribute to error is in the �nite

approximation of in�nite limiting processes: derivatives are replaced by di�erence quotients;

integrals are replaced by Riemann sums; and in�nite sequences are truncated. This is called

truncation error or discretization error. That is, the discretized problem can be solved to

machine precision, but that may be only an approximation to the real continuous problem.

This sort of error cannot be eliminated, but our goal is to make e�cient use of the available

resources. That will be the main focus below.

3



2 Ordinary Di�erential Equations

The general initial value problem we want to solve is

dy

dt

= f(y; t) (11)

with initial condition y(0) = y

0

. This is a �rst-order di�erential equation. y and f(y; t) can

be vectors when we have a �rst-order system. For example, the Hodgkin-Huxley equations

have y = (V;m; h; n). The t dependence may reect experimental manipulations, such as

turning an applied current on and o�, or other external inuences, such as an imposed synaptic

conductance change from another cell. We will suppress the t dependence for simplicity in many

cases below.

First order systems are natural in neurobiology. If confronted with a higher order system,

convert it to �rst order, since most solution packages assume this form. For example, the

second order equation

z

00

+ 101z

0

+ 100z = 0 (12)

can be converted by the transformation x = z; y = z

0

to

d

dt

 

x

y

!

=

 

0 1

�100 �101

! 

x

y

!

(13)

2.1 Euler's Method

The simplest method of solving ODEs is Euler's method, which directly applies Eq. 4:

y

n+1

= y

n

+ hf(y

n

): (14)

In order to integrate from the initial data at t = 0 up to t = T , divide the interval into N

equal steps of size h = T=N and approximate y(t

n

= nh) = y

n

. This method works and is

sometimes used in practice, but much better alternatives are described below. Nonetheless, it

is the conceptual basis of all other methods, and a little analysis gives insight into how they

all work.

2.2 Convergence and Accuracy of Euler's Method

It is easy to see that Euler's method converges for the special case of the equation y

0

= �y

with solution y(T ) = y

0

e

�T

. For this example,

y

N

= y

0

(1 + h�)

N

= y

0

(1 + T�=N)

N

(15)

Recalling that lim

N!1

(1 + 1=N)

N

= e, we see that lim

N!1

y

N

= y

0

e

�T

.

The following argument outlines the proof for general problems and gives an estimate of

the error. You may skip to the conclusions below if you like.

4



From Eq. 4 we see that the error incurred in going from t

n

to t

n+1

is O(h

2

). Due to

accumulation of these local errors over N = 1=h steps, the global error at time T is O(h). The

proof follows:

Let e

n

= y(t

n

)� y

n

be the error at t

n

. To see how e

n

grows with n, subtract

y

n+1

= y

n

+ hf(y

n

):

from

y(t+ h) = y(t) + hf(y(t)) +O(h

2

)

to get

e

n+1

= e

n

+ h(f(y(t)) � f(y

n

)) +O(h

2

)

Applying the Mean Value Theorem to f ,

e

n+1

< e

n

+ hMe

n

+O(h

2

);

where M is the maximum of f(y) over the interval of interest. This has the form

e

n+1

< �e

n

+ �;

where � = 1 + hM , and � = Ch

2

. (FYI: This di�erence equation is the same one that arises

in computing mortgages and annuities.) Assuming the initial error is 0, then

e

1

< �

e

2

< �� + �

and

e

n

< �(1 + : : : + �

n�1

)

Summing the geometric series,

e

n

< �

(�

n

� 1)

�� 1

< �

�

n

�� 1

Replacing � and � by their de�nitions,

e

N

<

Ch

M

(1 + hM)

N

<

Ch

M

e

hMN

=

Ch

M

e

MT

: (16)

Conclusions: This error estimate shows

� The global error at T is O(h) (�rst order accuracy).

� The error grows exponentially in time.

� The error increases with M . This suggests that one should take smaller steps where the

solution is changing more rapidly. We will return to this below.

The error analysis above ignores round-o� error. If one assumes that a �xed error is added

at each time step, then the error estimate of Eq. 16 is modi�ed to O(h)+O(�

mch

h

�1

). That is,

taking more steps reduces the discretization error, but increases the round-o� error. Therefore,

there is a point of diminishing returns where the total error increases as h decreases. Better

results require not more e�ort, but more e�ciency. The key is to take more terms of the Taylor

series and reduce the discretization error to O(h

p

), with p > 1.

5



2.3 Higher Order Methods: Runge-Kutta

Euler's method is analogous to using a Riemann sum to evaluate an integral (quadrature) (and

is in fact equivalent if the ODE is y

0

= f(t)) in that f is evaluated at only one endpoint of the

time interval. By analogy with the trapezoidal rule for quadrature one can average the values

of f at the left and right endpoints and obtain second-order accuracy:

y

n+1

= y

n

+

h

2

(f(t

n

; y

n

) + f(t

n+1

; y

n+1

)) : (17)

An immediate problem is that y

n+1

appears on both the right and left sides of the equation;

this is therefore said to be an implicit method. One approach is to use an Euler step to estimate

y

n+1

. The resulting method is called Heun's method:

z

n+1

= y

n

+ hf(t

n

; y

n

) (18)

y

n+1

= y

n

+

h

2

(f(t

n

; y

n

) + f(t

n+1

; z

n+1

)) :

This turns out also to be second order accurate, although not as stable as the genuine trape-

zoidal rule.

Another second order method is the midpoint method:

z

n+1

= y

n

+

h

2

f(t

n

; y

n

) (19)

y

n+1

= y

n

+ hf(t

n+1

; z

n+1

):

Both Heun and midpoint belong to the family of second order Runge-Kutta methods and are

considered one-step methods since they require only the value of y at the last time step to

start. Both require two function evaluations per step, vs. one for Euler. However, the gain in

accuracy far outweighs the extra e�ort (see Exercise 5). Even further gains are achieved by

going to the fourth order Runge-Kutta method (RK4), which samples f four times per time

step:

m

1

= f(t

n

; y

n

) (20)

m

2

= f(t

n+

1

2

; y

n

+

h

2

m

1

)

m

3

= f(t

n+

1

2

; y

n

+

h

2

m

2

)

m

4

= f(t

n+1

; y

n

+ hm

3

)

y

n+1

= y

n

+

h

6

(m

1

+ 2m

2

+ 2m

3

+m

4

)

where t

n+

1

2

= t

n

+h=2. Note that f is probed at each end point and twice in the middle of the

interval. The analogous quadrature method is Simpson's rule, which is a weighted average of

the trapezoidal and midpoint quadrature rules. This is a commonly used integration method,

but not the best. For many scientists writing their own codes, it appears to represent the

6



psychological break-even point between investing more e�ort in programming vs. investing

more CPU time.

RK4 is also a break-even point in the sense that one cannot get 5th order accuracy with

5 function evaluations; a minimum of 6 are required. Moreover, with 6 function evaluations,

there are many combinations that give 4th or 5th order accuracy. This opens up a way to

dramatically improve Runge-Kutta by monitoring the local error and varying the step-size.

One update matches the Taylor series up to 4th order, and the other to 5th order. Thus,

the di�erence between the two is a good approximation to the error in the 4th order update.

The 5th order update is used to advance the solution, and the error estimate is used to adjust

the step size. This trick and a set of usable coe�cients are due to Fehlberg, but there are

many variants. Implementation details and code can be found in [12]. A more naive method

based on taking steps of size h and 2h to get an error estimate also works, but requires nearly

twice as many function evaluations per step. Both simple and adaptive versions of RK4 are

implemented in dstool and xpp.

2.4 Predictor-Corrector Methods

Heun's method (18) is also an example of a predictor-corrector method: an Euler step is used

to predict y

n+1

, and a trapezoidal rule step corrects it (improves the accuracy). To implement

the full trapezoidal rule, one must solve the non-linear equation for y

n+1

. One way is to use

Newton's method. A simpler approach is to iterate the corrector step. Once an initial estimate

y

(0)

n+1

is obtained using Euler, it can be used to get a better estimate,

y

(1)

n+1

= y

n

+

h

2

�

f(t

n

; y

n

) + f(t

n+1

; y

(0)

n+1

)

�

; (21)

and so on until the successive values of y

(p)

n+1

di�er by less than a prescribed tolerance. The

iteration is guaranteed to converge provided that h is small enough. We will next describe a

more sophisticated predictor-corrector method for ODEs, but trapezoidal rule based methods

are often used for PDEs.

2.5 Multi-step Methods

Although Runge-Kutta with adaptive stepping works pretty well, for problems with complex

f 's, 4 function evaluations per time step may be a steep price to pay. Multi-step methods use

the values of y at several previous time steps. The Adams methods have the general form:

y

n+1

= y

n

+ h

Z

t

n+1

t

n

p(t) dt; (22)

where p(t) interpolates f(t; y(t)). The explicit r-step Adams-Bashforth (AB) method interpo-

lates at t

n

; t

n�1

; : : : ; t

n�r

, so

y

n+1

= y

n

+ h [c

0

f

n

+ c

1

f

n�1

+ :::+ c

r�1

f

n�r+1

] ; (23)

7



where f

n

= f(t

n

; y(t

n

)). The implicit r-step Adams-Moulton (AM) method interpolates at

t

n+1

; t

n

; : : : ; t

n+1�r

, so

y

n+1

= y

n

+ h [�c

0

f

n+1

+ �c

1

f

n

+ :::+ �c

r�1

f

n�r+2

] : (24)

The r-step methods have truncation error O(h

r

).

AB and AM are generally used as a predictor-corrector pair. AM can be iterated repetitively

until it converges, but in practice one PC step is considered best. If insu�cient accuracy is

obtained, it is better to reduce the time step than to iterate further.

The most commonly used members of the family are the 4-step AB:

y

n+1

= y

n

+

h

24

[55f

n

� 59f

n�1

+ 37fy

n�2

� 9f

n�3

] ; (25)

and 4-step AM:

y

n+1

= y

n

+

h

24

[9f

n+1

+ 19f

n

� 5f

n�1

+ f

n�2

] : (26)

For a derivation of the strange-looking coe�cients, see [6].

The strong suit of AB/AM is that only 2 function evaluations are needed per step; each

value is used 4 times, not discarded as in RK4. This is also the Achilles heel, however: to

start, 4 values of y are needed. These are generally provided by RK4.

A �xed step-size version of AB/AM is included in xpp, but the method is most useful with

variable steps. The key is that the error can be estimated from the P and C values of y

n+1

.

The local error for both AB and AM is O(h

5

), but with di�erent constants:

y = y

P

+ c

P

h

5

(27)

y = y

C

+ c

C

h

5

(28)

Subtracting we have

0 = y

P

� y

C

+ (c

P

� c

C

)h

5

(29)

Using Eq. 28 we can eliminate h

5

to get an estimate for the error in the corrector value, y

C

:

y � y

C

� (y

P

� y

C

)

c

C

c

C

� c

P

: (30)

Using values c

C

and c

P

obtained from standard formulas for the error in polynomial interpo-

lation we end up with

jy � y

C

j �

19

270

jy

P

� y

C

j : (31)

If y is a vector, a scaled sum of the components should be used. If the error is greater than a

preset maximum, h is halved; if the error is less than the minimum, h is doubled. When h is

halved, new starting values can be obtained by interpolating with RK4. When h is doubled,

4 new starting values can be obtained by using every other old step, provided 7 old points are

saved. Additional implementation details can be found in [12], along with a polemic against

PC methods.

8



2.6 Stability and Sti� Equations

So far, our choice of h has been dictated only by accuracy. We will now see that stability must

also be considered. This is especially critical in problems with multiple time scales.

As we saw in Eq. 15 Euler applied to y

0

= �y gives y

N

= y

0

(1 + h�)

N

, which converges

to y

0

e

�t

as h ! 0. We also proved that the error decreases like h. However, if � < 0, then

not only will the error be large if h is taken too big, but the numerical solution will grow

exponentially instead of decaying exponentially like the true solution. In order to guarantee a

decaying solution h must satisfy

j1 + h�j < 1 (32)

or

0 < h <

�2

�

(33)

(Monotonic decay requires h < �1=�.)

An alternative that avoids this di�culty is to use an implicit method, backward Euler:

y

n+1

= y

n

+ hf(t

n+1

; y

n+1

): (34)

In general, a non-linear equation must be solved for y

n+1

, but for our linear example we get

the following recursion:

y

n+1

=

1

1� h�

y

n

(35)

From the Taylor series (Eq. 5) we see that this agrees with forward Euler to �rst order, so it

too will converge to the solution with global error O(h). Furthermore, the solution will always

decay for any � which is negative. So, the solution may be inaccurate, but it will never blow

up. In fact, if h is very large, the solution will be damped even more rapidly. That is, the

method pushes the decaying solution prematurely towards its steady-state value of 0.

Thus, backward Euler is unconditionally stable for any equation with decaying exponential

solutions, whereas forward Euler is stable conditioned on restricting h. (On the other hand,

the backward Euler solution grows when � > 0, but so does the real solution, so we can't

complain.)

Applying the trapezoidal rule (17) to the same case gives

y

n+1

=

1 + h�=2

1� h�=2

y

n

: (36)

Like backward Euler, this decays for all � < 0, but the multiplying factor ! �1 as �! �1,

so the trapezoidal can su�er from slowly damped spurious oscillations.

An explicit alternative method, exponential Euler, sometimes used to avoid instability in

linear equations of the form

dy

dt

= �A(t)y +B(t) (37)

9



makes the next iterate a convex combination of the current value and the steady-state:

y

n+1

= y

n

e

�Ah

+

B

A

(1� e

�Ah

) (38)

See [9, p. 251{254]. As h! 0, this reduces to regular Euler. For large h the solution remains

bounded, but it is not clear what the accuracy is. We will return to this method in the context

of PDEs.

Next we give an example of a method that looks more attractive than forward Euler, but

is unstable for any value of h:

y

n+1

= y

n�1

+ 2hf(y

n

) (39)

This is an explicit, two-step, multistep method which is second order accurate (see Eq. 56); it

is sometimes called the leapfrog method. Applying it to the equation y

0

= �y gives

y

n+1

= �2hy

n

+ y

n�1

: (40)

This is a linear second-order di�erence equation and can be solved analytically in a manner

analogous to linear second-order di�erential equations [6]. Here we just state what the solution

is. To make the numbers work out simply we choose h = 3=4. Then, if y

0

= 1; y

1

= 0:5,

y

n

= 2

�n

. This exponentially decaying solution is a reasonable approximation to the ODE

given the coarse time step. However, if y

0

= 1+�, then y

n

= (1+

4�

5

)2

�n

�

�

5

(�2)

n

. Only an O(�)

error is introduced into the coe�cients, but over time the exponentially growing component

will dominate if � is not exactly 0. Making h smaller reduces the degree of instability but

does not eliminate it. The decaying solution to the ODE cannot be stably computed by this

algorithm. Note that forward Euler is stable for this equation with this h. Although leapfrog

by itself is unstable, it is a key building block of an e�ective method, Bulirsch-Stoer [12].

The above examples may seem arti�cial. After all, the stability condition for forward Euler

merely says that h can't be more than twice the time constant. To resolve behavior on the

order of the time constant requires a small time step any way. If the behavior for long times

is desired, it is more sensible just to look at the steady-state solutions. A real problem arises,

however, when an equation has at least two disparate time constants. Eq. 12 illustrates the

di�culty. The eigenvalues of the system are �100 and �1, so the general solution is

z(t) = C

1

e

�100t

+ C

2

e

�t

(41)

with the C

i

determined by the initial conditions z(0); z

0

(0). The solution has a slowly decaying

component and a rapidly decaying one. After a short time, the fast component is negligible, but

an explicit method like forward Euler must take a time step dictated by the fast component.

An implicit method will e�ectively take the fast process to equilibrium. That component will

be solved inaccurately, but it is small, and the overall solution will be good. One can informally

measure the sti�ness by the ratio of the largest to the smallest eigenvalue in magnitude. Here

it is 100, but in some systems, especially chemical reaction systems, the ratio can be 10

6

.

Backward Euler was demonstrated here to illustrate the principle, but in practice one needs

higher order methods. Forward and backward Euler can be combined in a predictor-corrector

10



pair. One iteration gives Heun's method, which is second order, but lacks the stability of

the fully implicit trapezoidal rule. One could iterate to convergence, but convergence is slow

precisely when the system is sti�. An alternative is to use Newton's method.

A family of implicit methods of order up to 5 or 6 is used in the algorithm of Gear [4]. The

�rst order method is backward Euler,

y

n+1

= y

n

+ hf(y

n+1

); (42)

The method of order k is

y

n+1

� a

0

y

n

� a

1

y

n�1

� : : :� a

k�1

y

n�(k�1)

= hb

k

f(y

n+1

) (43)

Thus, like Adams-Moulton, these are implicit multistep methods, but they use old values

of y rather than f(y), and they evaluate f only at the right endpoint of the timestep interval.

The coe�cients can be derived using the elegant formalism of operator series (Ex. 23), as can

the strange coe�cients of the Adams family of methods [5, pp. 104{110].

In practice, to solve sti� systems it is best to use one of the many packages around that

implement the Gear method [4]. xpp has a Gear option. If writing your own driver code, you

can use the IMSL DGEAR subroutine or the public domain subroutine LSODE.

2.7 Attractors and Chaos

One way in which biology is easier than physics, is that the dynamical systems usually have

stable attractors. For example, it is easier to calculate a limit cycle numerically, than the

orbit of a simple harmonic oscillator, because errors in the numerical solution are damped

by the trajectory's approach to a stable attractor. The error estimate for Euler's method

(Eq. 16) suggests that the error grows exponentially in time. This occurs in problems with

neutrally stable orbits, but not those with limit cycles (cf. Ex. 11). Similarly, when computing

bifurcation diagrams, the structural stability of features such as Hopf bifurcations means they

preserved in the face of small perturbations due to round-o� error, although the location will

be somewhat in error.

Occasionally one runs into models with chaos, which su�er from sensitive dependence

on initial conditions (Ex. 12). One might think that it would be impossible to compute

a meaningful solution because any error would be magni�ed exponentially. However, even

chaotic solutions are attracted to a stable set; asymptotically the orbits are only wild within

the con�nes of the attractor. It turns out that the numerically computed trajectory, while not

faithful to the true trajectory with the given initial conditions, is shadowed by another true

trajectory with di�erent initial conditions. Thus, acceptable answers are obtained, even with

simple methods like Runge-Kutta, provided we relax our standards from \Leave with the one

that brought you" to \If you can't be with the one you love, love the one you're with."

Of course, there are delicate problems that are di�cult to resolve numerically, but the mere

existence of chaos does not necessarily invalidate numerical methods.

11



2.8 Choosing a Method

We close the ODE section with advice on how to choose a method for your problem. See also

[12] for another point of view.

On most problems almost anything will work, even Euler if you are patient. From the

point of view of e�ciency, however, using adaptive methods will return the investment of

programming or intellectual e�ort enormously.

Lower order methods, such as Heun's method, are not used much, but are included because

they are closely related to PDE methods such as Crank-Nicolson that follow. There is one

important exception. Heun's method is often used for stochastic di�erential equations where

RK methods of order higher than 2 are attainable only for special systems. See [3].

Problems sti� enough to mandate using Gear are rare in neuroscience, but the LSODE

package is a reliable, general purpose solver with good error and stepsize control and options

for Adams type methods as well. There is now a version in C, called CVODE.

One problem that poses special di�culty is discontinuities. Unfortunately, these arise

naturally in neuroscience when simulating voltage-clamp steps, integrate-and-�re neurons, or

noise from channels or other sources. Naive implementations of multi-step methods tend to

fail because they attempt to �t a smooth polynomial to past values, on the other side of the

discontinuity. Robust versions of Gear like LSODE will isolate the singularity and restart, but it

is more e�cient to tell the solver about it explicitly. This is what xpp does. See Ex. 13. Runge-

Kutta methods are simpler for problems with discontinuities because they have no memory

of the past; they essentially start over at each time step. However, they will be reduced to

�rst-order accuracy if the discontinuous events do not occur on time-step boundaries. Second-

order accuracy can be achieved in integrate-and-�re networks by using linear interpolation to

determine �ring times between time steps [7].

There are many sources of free software, much of it of high quality. The book Numeri-

cal Recipes [12] is a valuable source of algorithms and codes on many topics in addition to

ODEs. Consult the ODE chapter for adaptive RK, and also the Bulirsch-Stoer method which

we have not covered here. On the Web, there is a large repository maintained at netlib

(http://netlib.att.com/). The National Institute of Standards and Technology has a Guide to

Available Mathematical Software (GAMS), which includes a decision tree to help locate the

appropriate routine (http://gams.nist.gov). Since sites like these are subject to change and

new ones are likely to emerge, look at my Web page (http://mrb.niddk.nih.gov/sherman) for

updates.

The choice of method can depend in subtle ways on the nature of the problem, so it is

important to be alert and exible. It is worthwhile to experiment with more than one method

to be safe. Getting answers from more than one source also helps to debug programs (or xpp

or dstool input �les). It is also helpful to know the answer. This is not meant facetiously:

if you have knowledge of the qualitative properties of the solution or quantitative estimates

of the expected sizes you will not be seduced by erroneous answers that look good. See for

example Ex. 16, 17. Finally, supplementing numerical methods with analytical approaches

is recommended. Programs like Mathematica and Maple help make this realistic even for

non-experts.

12



3 Partial Di�erential Equations

3.1 Cable Equation

PDE's are much more complicated than ODE's, and each of the several classes requires its

own solution methods. Fortunately the two main equations that come up in neuroscience are

relatively easy to handle. They are the linear cable equation,

�

@v

@t

= �

2

@

2

v

@x

2

� v; (44)

where � = 1=(r

m

c

m

), �

2

= r

m

=r

i

, and the nonlinear Hodgkin-Huxley equations and its variants,

�

@v

@t

= �

2

@

2

v

@x

2

� I

ion

(m;n; h) (45)

�

s

(v)

@s

@t

= s

1

(v)� s;

where s = m;n; h and I

ion

is scaled by a typical conductance for comparison to the cable

equation. Note that the gating variables s have no direct spatial dependence, but vary in

space because v varies. The close relationship of these equations respectively to the di�usion

and reaction-di�usion equations of chemistry and physics means that there is a rich legacy of

techniques to draw on.

Most of the additional di�culties in going from ODEs to PDEs already arise in the linear

case, so we will focus on that �rst.

3.2 Steady-State Cable Equation: Boundary Value Problems

For simplicity we consider �rst the steady-state cable equation for which time derivatives are

0 and the equation reduces to an ODE boundary value problem (BVP),

�

2

@

2

v

@x

2

� v = 0; (46)

on a cable running from x = 0 to x = L. To completely specify the problem we need boundary

conditions. The simplest case is to clamp v at the endpoints:

v(x = 0) = V

0

; v(x = L) = V

L

: (47)

One could solve this by the shooting method: turn it into a system for v and v

x

and solve the

initial value problem with a known initial condition for v and an unknown v

x

. Guess a value

for v

x

and integrate to x = L. The goal is to �nd what value of v

x

at 0 makes v = v

L

at x = L.

This is how xpp does it (Ex. 20).

We take a di�erent approach which generalizes to the time-dependent case. We divide the

interval [0; L] at J + 2 points x

j

= jk; j = 0; : : : ; J + 1; k = L=(J + 1) (We reserve h for time

step and use k for space). Note that x

0

= 0 and x

J+1

= L. We de�ne v

j

= v(x

j

).

13



Instead of converting to a �rst-order system we directly discretize the second derivative of

v. Using the Taylor series for v at x

j

to the left and the right we have

v

j+1

= v

j

+ v

x

(x

j

)k + v

xx

(x

j

)

k

2

2

+ v

xxx

(x

j

)

k

3

6

+ v

xxxx

(x

j

)

k

4

24

+ : : : (48)

v

j�1

= v

j

� v

x

(x

j

)k + v

xx

(x

j

)

k

2

2

� v

xxx

(x

j

)

k

3

6

+ v

xxxx

(x

j

)

k

4

24

+ : : :

Adding and solving for v

xx

(x

j

) we get a second-order accurate approximation:

v

xx

(x

j

) =

v

j�1

� 2v

j

+ v

j+1

k

2

+O(k

2

) (49)

Thus, we replace Eq. 46 with a linear system of algebraic equations:

�

2

k

2

[v

j�1

� 2v

j

+ v

j+1

]� v

j

= 0 (50)

for j = 1; : : : ; N .

If we think of each grid interval as a compartment, then Eq. 50 can be rewritten

1

kr

i

[(v

j

� v

j+1

)� (v

j�1

� v

j

)] + k

v

j

r

m

= 0:

using �

2

= r

m

=r

i

. This has the satisfying physical interpretation that, at steady-state, the sum

of currents into the compartment from the neighboring compartments and the current across

the membrane is 0.

Note also that by discretizing we have in a sense converted the continuous PDE into a

compartmental representation of the axon. Conversely, the solution methods here apply equally

to compartmental models.

We can write Eq. 50 more compactly in matrix form. Let V = (v

1

; : : : ; v

J

); we do not

include v

0

or v

J+1

because they are known and get put into the right hand side of the equation.

Then

AV = b: (51)

b = (�

�

2

k

2

v

0

; 0; : : : ; 0;�

�

2

k

2

v

L

); A is a tridiagonal matrix:

A =

�

2

k

2

B� I (52)

where I is the identity matrix and B is

2

6

6

6

6

6

6

4

�2 1 0 � � � 0 0 0

1 �2 1 � � � 0 0 0

.

.

.

.

.

.

.

.

. � � �

.

.

.

.

.

.

.

.

.

0 0 0 � � � 1 �2 1

0 0 0 � � � 0 1 �2

3

7

7

7

7

7

7

5

(53)

14



This matrix equation can be easily solved by Gaussian elimination in O(J) time. See the

Appendix for formulas and also [6, 10].

It is more common to specify the boundary conditions in terms of current instead of voltage.

For example, one might inject a current I at x = 0 and have no current ow across x = L

(sealed end). The equation for axial current ow (Ohm's Law) gives

@v

@x

(x = 0) = �r

i

I (54)

@v

@x

(x = L) = 0: (55)

We get a second-order accurate discretization by subtracting and solving for v

x

(x

j

) in Eq. 48:

v

x

(x

j

) =

v

j+1

� v

j�1

2k

+O(k

2

): (56)

The sealed end x = L can then be satis�ed by setting v

J+2

= v

J

. This appends an equation

for v

J+1

to Eq. 50:

�

2

k

2

[2v

J

� 2v

J+1

]� v

J+1

= 0; (57)

Similarly, we append an equation for v

0

:

�

2

k

2

[2v

1

� 2v

0

+ 2kr

i

I]� v

0

= 0: (58)

3.3 Time Dependent Cable Equation: Initial Boundary Value Problem

One approach to the time dependent case (still linear) is to view the PDE as a system of ODE's

for the vector V of v

i

's:

�

dV

dt

= AV: (59)

Equivalently, one can think of this as a compartmental model. One could solve this system by

forward Euler,

V

n+1

= V

n

+

h

�

AV

n

; (60)

at a cost of one O(J) matrix-vector multiplication per time-step. (We now use superscripts

to distinguish time steps from spatial grid size.) One can guess (correctly) that the accuracy

of this method is O(h) + O(k

2

). The equations at the boundaries are modi�ed as for the

steady-state pure boundary value problem.

As we saw in the section on ODE's, Euler is stable for equations with decaying solutions

(like this one) only if h < �2=min

m

(�

m

). The eigenvalues of B can be computed explicitly

(Ex. 19) to be

�

m

= 2

�

cos

�

m�

J + 1

�

� 1

�

= �4 sin

2

m�

2(J + 1)

: (61)

15



Then the eigenvalues of A=� are

�

m

=

�4�

2

k

2

�

sin

2

m�

2(J + 1)

�

1

�

: (62)

The �rst term is due to the di�usion, the second to the kinetics. If the kinetics are made slow

by decreasing g, � increases while �

2

=� remains constant. Then, only the �rst term matters,

and the fastest component is �

J

, for which the sin factor � 1. Thus, the stability condition

for forward Euler for this case is

h <

�2

�4�

2

=k

2

�

=

k

2

�

2�

2

: (63)

This is a bad thing: to achieve greater accuracy we must make k and h smaller. To maintain

stability, cutting k in half requires cutting h by 4. For compartment models, the same holds

as we increase the number of compartments.

Another way to view this situation is to estimate the sti�ness of A by looking at the ratio

of minimum and maximum eigenvalues ([6, 10]:

�

J

�

1

=

�4�

2

k

2

�

sin

2

J�

2(J+1)

�

1

�

�4�

2

k

2

�

sin

2

1�

2(J+1)

�

1

�

(64)

For large � and large J this ratio is O(J

2

), i.e., the sti�ness increases as the square of the

number of grid points or the number of compartments. The PDE, which corresponds to the

limit J !1, can be thought of as in�nitely sti�. Because A is symmetric the ratio �

J

=�

1

is

equivalent to the condition number of A (Eq. 10; see also [6]).

By doing a discrete Fourier transform of the iteration equations (60) one can see that making

k smaller introduces more Fourier components with shorter wavelength into the solution [6].

Although these contribute little to the solution, they explode if the stability condition is not

satis�ed.

On the other hand, increasing g makes the cable equation less sti�. Then � shrinks while

�

2

=� stays �xed and the sti�ness ratio! 1. Of course, the kinetics speed up, and we still need

a small time step to resolve the fast kinetics, but at least the choice of h is not bound in an

adverse way to the choice of k.

3.4 Implicit PDE Methods

If the problem at hand is sti�, one must resort to implicit methods. For example, backward

Euler for the PDE is

V

n+1

= V

n

+

h

�

AV

n+1

: (65)

This is linear and readily solved:

(I�

h

�

A)V

n+1

= V

n

: (66)

16



This method is unconditionally stable, like the corresponding ODE method. At each step a

tridiagonal system similar to (51) must be solved. The same considerations about handling

boundary equations apply. The solution at each step can be obtained in O(J) operations, the

same as forward Euler. The accuracy is also the same, �rst order in time and second order

in space. In e�ect this means that even though stability is not compromised, h must still be

proportional to k

2

for e�ciency: intuitively, it makes no sense to invest an enormous e�ort in

reducing the error due to k while the error due to h is still large (See also Ex. 22).

A better method that is second order accurate in both space and time is the trapezoidal

rule (also known as Crank-Nicolson),

V

n+1

= V

n

+

h

2�

(AV

n

+AV

n+1

); (67)

which can again be implemented by solving a tridiagonal system,

(I�

h

2�

A)V

n+1

= (I+

h

2�

A)V

n

: (68)

(cf. Eq. 36) This takes no more work than backward Euler and is also unconditionally stable,

so generally it is preferred.

Even Crank-Nicolson can not escape the clutches of the fundamental ratios �=�

2

(contin-

uous) and h=k

2

(discrete). If h=k

2

� 1, h�

J

will be negative and very large in magnitude,

giving rise to high frequency oscillations, sometimes called \ringing". The trapezoidal rule will

damp these out, but slowly (recall Eq. 36). This comes up especially in the presence of discon-

tinuities, as when simulating a voltage-clamp. In practice it is su�cient to take h=k < L=�,

where L is the length of the cable [15, p.132]; this ensures that the high frequency components

are damped more rapidly than the low frequency. Alternatively one can use backward Euler,

which does not su�er from this problem, although it too will give inaccurate answers if h=k

2

is taken too large.

The program Genesis includes a version of exponential Euler as an alternative to implicit

methods, which do not �t well with the overall structure of the package. It is applied to each

line of Eq. 59,

dv

j

dt

=

�

2

�k

2

�

v

n

j�1

� 2v

n

j

+ v

n

j+1

�

�

1

�

v

n

j

; (69)

to give the iteration

v

n+1

j

= v

n

j

e

��

+ �(v

n

j�1

+ v

j+1

)(1� e

��

);

where

� =

2�

2

h

�k

2

�

h

�

and

� =

�

2

=�k

2

2�

2

=�k

2

� 1=�

:

In a pure di�usion equation (no decay term in Eq. 44), � = 1=2. Then, for large �, exponential

Euler sets each value to the average of its two neighbors. This will eventually converge to the

17



solution of the one-dimensional Laplace equation, i.e. the steady-state. Thus, the solution does

not blow up even with large h. However, in general, it only converges to the correct solution

as h, k, and h=k

2

! 0, a much more restrictive condition than the stability condition for

forward Euler. It may be more accurate and less expensive to use forward Euler. Exponential

Euler would be at its best in non-sti� problems (few compartments/large k), with fast, linear

kinetics.

3.5 Nonlinear Cable Equations

We are �nally ready to solve the full non-linear Hodgkin-Huxley equations (Eq. 45) with

a modi�ed Crank-Nicolson scheme. In general, implicit methods are di�cult for non-linear

problems, but we can exploit a particular feature of Hodgkin-Huxley (observed by Hines [8])

to make life easier: The equation for v is linear in v if the gating variables s are held �xed, and

the equations for the s are linear in s if v is held �xed. Thus, we can use the following scheme:

�

h

�

V

n+1

� V

n

�

=

1

2

�

2

k

2

h

BV

n+1

+BV

n

i

+

1

2

h

I

ion

(S

n+1=2

; V

n+1

) + I

ion

(S

n+1=2

; V

n

)

i

(70)

�

s

(V

n

)

h

�

S

n+1=2

� S

n�1=2

�

=

1

2

h

(s

1

(V

n

)� S

n+1=2

) + (s

1

(V

n

)� S

n�1=2

)

i

(71)

Note the staggering of the time grids for V and S. One does a trapezoidal rule step to

advance S from step n� 1=2 to n+ 1=2 using V

n

and does a trapezoidal rule step to advance

V from n to n+ 1 using S

n+1=2

. Thereby only linear tridiagonal equations have to be solved

for v at each step. (The equations for s can be solved analytically because s

i

does not depend

on s

j

when v is �xed.) The staggering (analogous to the midpoint method) makes the process

second order accurate in time.

To motivate the staggering of time consider the following simple ODE example [2, Vol. I,

Chap. 9].

d

2

x

dt

2

= �x: (72)

We can write this as a �rst order system,

_x = v (73)

_v = �x: (74)

This can be discretized using forward Euler as

x

n+1

= x

n

+ hv

n

(75)

v

n+1

= v

n

� hx

n

; (76)

but the following alternative

x

n+1

= x

n

+ hv

n+1=2

(77)

v

n+1=2

= v

n�1=2

� hx

n

(78)

18



is equivalent to the second order accurate discretization of Eq. 72

x

n+1

� 2x

n

+ x

n+1

= (x

n+1

� x

n

)� (x

n

� x

n�1

) (79)

= h(v

n+1=2

� v

n�1=2

) (80)

= �h

2

x

n

: (81)

The above trick does not work for Hodgkin-Huxley in cases where the v equation is non-

linear in v. For example, one often sets m = m

1

(v) to eliminate the fast time scale of m from

the problem and reduce the dimension of the system. Also, treating the driving force linearly is

not always valid, especially for Ca

2+

currents, where one might use the Goldman-Hodgkin-Katz

formula. Finally, sometimes one uses polynomial-based models like Fitzhugh-Nagumo.

In those cases one must solve the nonlinear equations by iteration or by using Newton's

method. Since the sti�ness of these equations stems from the di�usion terms not the kinetics,

iterative methods converge after a few iterations.

One scheme for iteration is:

�

h

�

V

n+1;p+1

� V

n

�

=

1

2

�

2

k

2

h

BV

n+1;p+1

+BV

n

i

+

1

2

h

I

ion

(S

n+1;p

; V

n+1;p

) + I

ion

(S

n

; V

n

)

i

(82)

�

s

(V

n+1;p+1

)

h

�

S

n+1;p+1

� S

n

�

=

1

2

h

(s

1

(V

n+1;p+1

)� S

n+1;p+1

) + (s

1

(V

n

)� S

n

)

i

(83)

where the equations are iterated for p = 0; 1; : : : until convergence, and V

n+1;0

= V

n

, S

n+1;0

=

S

n

. The linear parts of the right hand side are treated fully implicitly, while the non-linear parts

are treated by predictor-corrector. One tridiagonal system must be solved for each iteration.

Note that the matrix coe�cients on the diagonal must be updated with the new values of the

gating variables with each iteration. Often, taking one predictor step and one corrector step

is adequate.

3.6 Higher Dimensions

Although cable problems are inherently one-dimensional, one sometimes needs to solve prob-

lems in two or three space dimensions. Some examples are cardiac wave propagation and Ca

2+

di�usion in a round cell. We give just a avor of the di�culties involved with the simple 2-D

linear problem:

u

t

= u

xx

+ u

yy

: (84)

For a unit square region, 0 < x < 1; 0 < y < 1, we can let u

ij

= u(i�x; j�y); i; j = 1; : : : ; J ,

or u

ij

= u(ik; jk) with �x = �y = k. Note that u

ij

is to be interpreted as a vector of length

J

2

, not a matrix. Then the forward Euler discretization of Eq. 84 is

u

n+1

ij

= u

n

ij

+

h

k

2

h

(u

n

i+1;j

� 2u

n

ij

+ u

n

i�1;j

) + (u

n

i;j+1

� 2u

n

ij

+ u

n

i;j�1

)

i

(85)

19



or

U

n+1

=

�

I+

h

k

2

C

�

U

n

(86)

where C is now an J

2

� J

2

pentadiagonal matrix. If u

ij

is ordered sweeping row-wise in the

x-direction (like reading a page from bottom to top), C has a structure like

0

B

B

B

B

B

@

T I O O O

I T I O O

O I T I O

O O I T I

O O O I T

1

C

C

C

C

C

A

; (87)

where the blocks are J�J , I is the identity matrix, O is the zero matrix, and T is a tridiagonal

matrix like B in Eq. (53), but with �4 on the diagonal instead of �2.

The stability condition is h < k

2

=4. The backward Euler method in the same notation is

then

�

I�

h

k

2

C

�

U

n+1

= U

n

(88)

and Crank-Nicolson is

�

I�

1

2

h

k

2

C

�

U

n+1

=

�

I+

1

2

h

k

2

C

�

U

n

(89)

These are straightforward generalizations of the 1-D methods, but, unfortunately, if one at-

tempts to solve the above matrix equations by Gaussian elimination, the zero diagonals �ll

in, resulting in unfeasibly large storage requirements. There is a vast literature of iterative

methods for solving such matrix equations, but they are slow, especially if one has to resolve

at every time step. The latter will be the case if nonlinear ionic current terms are included in

the PDE because then the diagonal terms of the matrix will change at every time step. An

alternative is the Alternating Direction Implicit (ADI) method of Peaceman and Rachford, in

which one solves two consecutive tridiagonal problems, corresponding to the x and y partial

derivatives. One version [13] goes as follows:

�

I�

1

2

h

k

2

�

2

x

�

U

n+1=2

=

�

I+

1

2

h

k

2

�

2

y

�

U

n

(90)

�

I�

1

2

h

k

2

�

2

y

�

U

n+1

=

�

I+

1

2

h

k

2

�

2

x

�

U

n+1=2

(91)

where

�

2

x

U

n

= u

n

i+1;j

� 2u

n

ij

+ u

n

i�1;j

�

2

y

U

n

= u

n

i;j+1

� 2u

n

ij

+ u

n

i;j�1

In other words, �

2

x

+ �

2

y

= C. It can easily be shown (see Appendix) that this splitting of

the 2-D Laplacian operator into successive 1-D Laplacians is equivalent to Crank-Nicolson to

O(h

2

). Therefore this method has truncation error O(h

2

) + O(k

2

) and the same stability as

20



Crank-Nicolson. It also has the desirable feature that in each step (n! n+

1

2

; n+

1

2

! n+1) J

uncoupled tridiagonal systems are solved, so the method can be easily vectorized or parallelized.

The method can also be extended to 3D. One source for further details is [13].

3.7 Things Left Out

We have covered how to solve space-clamped problems by solving ODEs and how to solve

space and time-dependent PDEs on a single cable. Often one wants to solve on a branched

structure. In an unbranched cable, each node has two neighbors giving the matrix a tri-diagonal

structure. When the cable is branched, however, the nodes at the branch points have at least

three neighbors, introducing far o�-diagonal elements. If one is not careful about the order of

the nodes, Gaussian elimination will introduce additional o�-diagonal elements, complicating

the solution process. Hines [8] shows how to number the branches and nodes to avoid �ll-

in, and also gives the formulas for spatially varying cable properties. Another approach to

branching is that of Mascagni [11]. There one breaks up the structure (a neuron or a network

of neurons) into sub-pieces. First the equations are solved as if the pieces were independent of

each other, and then the solutions are matched at the boundaries. The virtue of this is that

the sub-pieces can be solved e�ciently on a vector or parallel computer. In fact, this speeds

up execution so much that it would pay to take a unitary cable and arti�cially split it up.

21



4 Final Comments

We have surveyed the current wisdom on the best solutions to what might be called the

easy problems. Small systems of ODE's, even sti� ones, can be solved very e�ciently to

high accuracy. PDE's are naturally more di�cult, but reasonable methods (i.e. second-order

accurate, O(N ) work) are available for one-dimensional problems, including branched neurons.

It is of course not di�cult to come up with problems that will confound the best algorithms

on the fastest computers, e.g. any problem with sti� kinetics in two or three space dimensions.

We have conciously avoided venturing into these areas, both because of our own limitations

and the limitations of the �eld as a whole.

In addition to the particular advice we have sprinkled throughout, we conclude here with

some general concepts that are relevant to problems on all scales of di�culty. Numerical

methods are fallible. Some may have considerable arti�cial intelligence built into them, but

in the end there is no alternative to a deep knowledge of the particular physical problem on

the part of the investigator. General dynamical systems theory can be very helpful because it

categorizes possible and impossible behaviors.

There is no algorithm that solves all problems, and the user must know enough to adapt

the tool to the job. It also pays to solve a problem by more than method. That means supple-

menting numerical methods with analytical methods and also using more than one numerical

method. In addition to catching routine errors, this may uncover very subtle ones. In one

small but illuminating example that we know of, an instability in the dynamical system was

sensitive to numerical error introduced by the Gear method, but not Runge-Kutta, leading to

discovery of a new class of phenomena (Sherman and Rinzel, 1992). No computer program

can be expected to anticipate such cases. Ultimately computational science is isomorphic to

all of science, and can no more than all of science ever be complete.

22



4.1 Appendix

4.1.1 Tridiagonal Systems

Here is the algorithm for solving tridiagonal systems from [10], reproduced for convenience.

The system of equations to solve is

L

j

V

j�1

+D

j

V

j

+ U

j

V

j+1

= R

j

; j = 1; 2; : : : ; J

with L

1

= U

J

= 0. The \forward elimination" step:

U

1

= U

1

=D

1

R

1

= R

1

=D

1

D

j

= D

j

� L

j

U

j�1

; j = 2; 3; : : : ; J

R

j

= (R

j

� L

j

R

j�1

)=D

j

; j = 2; 3; : : : ; J

U

j

= U

j

=D

j

; j = 2; 3; : : : ; J � 1

The \backward substitution" step:

V

J

= R

J

V

j

= R

j

� U

j

V

j+1

; j = J � 1; J � 2; : : : ; 1

The solution is returned in V ; all the other arrays are overwritten. If this is acceptable, only

5 arrays of length J are required. The number of arithmetic operations is O(J), which is

optimal.

4.1.2 ADI Equivalence to Crank-Nicolson

Letting � =

1

2

h

k

2

, Crank-Nicolson (Eq. 89) is

(I� �C)U

n+1

= (I+ �C)U

n

;

while ADI (Eq. 90{91) is

�

I� ��

2

x

�

U

n+1=2

=

�

I+ ��

2

y

�

U

n

�

I� ��

2

y

�

U

n+1

=

�

I+ ��

2

x

�

U

n+1=2

:

Combining the last two equations gives

�

I� ��

2

y

�

U

n+1

=

�

I+ ��

2

x

��

I� ��

2

x

�

�1

�

I+ ��

2

y

�

U

n

:

Now, ��

2

y

and ��

2

x

are O(h), so we can rewrite the above formally as

�

I� ��

2

y

��

I� ��

2

x

�

U

n+1

=

�

I+ ��

2

x

��

I+ ��

2

y

�

U

n

:

23



Expanding gives

�

I� ��

2

x

� ��

2

y

+O(h

2

)

�

U

n+1

=

�

I+ ��

2

x

+ ��

2

y

+O(h

2

)

�

U

n

;

which is equivalent to Crank-Nicolson up to O(h

2

) because C = �

2

x

+ �

2

y

.

24



5 Exercises

Example �les needed for the exercises can be found at http://mrb.niddk.nih.gov/sherman, along

with updated or additional copies of these notes.

1. If the Earth (taken as a sphere with radius r = 6378 km) were covered with a 1 �m layer

of gold, what would be the increase in surface area [16]? Compare the answers you get if

you a) take the di�erence in the area before and after or b) use di�erentials to estimate

the change. Which is more accurate, the exact method or the approximate method?

2. Mathematica knows Taylor series: Use the Series function to get the �rst 4 terms of

Exp[x], Sin[x], and 1/(1 - x) expanded around 0 and f[x] expanded around a. Hint:

you can get the syntax by typing ?Series. Compare the series for Exp[I x] and Cos[x]

+ I Sin[x] (I = Sqrt[-1]).

3. You can use xpp to test the precision of your workstation. Write a .dif �le to calculate

(1 + (0:5)

i

)� 1. Optional: Use Mathematica to calculate the same function and vary the

precision with the N command.

4. Given that the error, discretization plus round-o�, of a p order method for ODEs is

h

p

+ �

mch

h

�1

�nd the minimum error attainable. What happens to the minimum h as p

increases? The minimum error?

5. Consider three methods with global error O(h); O(h

2

); and O(h

4

) and requiring 1, 2, and

4 evaluations of f per time step, respectively. Calculate the total number of function

evaluations needed to achieve a global error � for each method.

6. Write down analytically the result of one step of RK4 applied to the equation y

0

= �y

and show that the local truncation error is O(h

5

) by comparing with the Taylor series

for e

�h

. Mathematica can help with the algebra.

7. Test the accuracy of Euler and RK4 on the equation y

0

= �y with � > 0 using either

xpp or dstool. Plot or tabulate the error at a �xed time T vs. h. Verify that the error

increases exponentially in time with Euler.

8. Test forward Euler on y

0

= �y with � < 0 and verify that the solution blows up if h is

not small enough. xpp doesn't have a backward Euler menu item, but you can fake it by

writing out the recursion in a .dif �le and using the di�erence equation solver. You can

compare by doing both forward Euler and backward Euler in the same �le.

9. The Mathematica command

Do[{y2 = -1.5 y1 + y0; y0 = y1; y1 = y2; Print[y2]},{10}] executes the unsta-

ble recursion of the leapfrog method (Eq. 39) 10 times. Test it with y

0

= 1 + �; y

1

= 0:5

for various values of � including 0. (Optional: simulate leapfrog with xpp or dstool in

di�erence equation mode and verify that it is always unstable.)

25



10. Mathematica can also calculate Eq. 39 recursively. De�ne f[0] := y0 ; f[1] := y1;

f[n_] := 5/2 f[n-1] - f[n-2] and see how long it takes to evaluate f[20]. Show that

evaluating f[n] takes F

n

function evaluations, where F

n

is the nth Fibonacci number.

Can you see why recursive algorithms, while elegant, are not commonly used in numerical

work?

11. Solve the predator-prey system

_x = ax+ bxy (92)

_y = cy + dxy

with parameters a = 0:25; b = �:01; c = �1:0; d = :01 and initial conditions x = 80; y =

30. The system will oscillate with these values. Use Euler with a range of step sizes.

Observe the behavior in the x-y phase plane. How small a value of �t is needed to get

good answers with Euler? RK4? After �nding good numerical parameters, experiment

with di�erent initial conditions. Compare the nature of the oscillations with those of

the system in the �le qbc.ode (the model is described in [14]; you can use the default

parameters in the �le). Which system is more delicate to integrate numerically? Why?

12. (Taken from \Orbits Worth Betting On", Rob Knapp and Stan Wagon, CODEE Newslet-

ter, Winter 1996.) The forced Du�ng equation

x

00

+ 0:15x

0

� x+ x

3

= 0:3cos(t)

is bistable between a limit cycle and a chaotic attractor. Compare the sensitivity to

initial conditions when starting from x; x

0

= (0:6; 1:3) and x; x

0

= (�1:0; 1:0).

13. Simulate a voltage clamp with xpp in two ways, with a Heaviside function (using heav())

and with a global ag variable. Try both Runge-Kutta and Gear.

14. Solve the sti� system (12) with initial conditions x(0) = 1:01; y(0) = �2 using Euler,

RK4, Adams, and Gear. How small does h have to be for each method to avoid insta-

bility? Compare the form the instability takes between methods.

15. Compare the speed of Adams and Gear on burst.ode with (a) � = 0:9, (b) � = 10, and

(c) n = n

1

(v). (Case (c) will require rewriting the system.)

16. Here is an example of qualitatively wrong answers obtained because h is too big, even

though the solutions look internally consistent. Integrate the �le burst.ode with the

given parameters. Establish a gold standard solution with Gear. You should see periodic

bursting with 5 spikes per burst. Examining the V -S phase plane con�rms the solution

to be periodic. Rerun with Euler using dt = .1, .5, 1.0. You may also test some of

the other methods to see how big dt can be for them.

17. This example is worse than the previous one: The problem cannot be �xed by making

the step size smaller. It shows how one can be deceived by a numerical answer that

26



appears to be very accurate unless one knows in advance what the behavior of the

system should be. Integrate the coupled oscillator system in the �le qbctwo.ode. Good

parameters are s = 0:15; gc = 0:05 and the rest at their defaults. With initial conditions

v = v2 = -47, n = n2 = .05 the cells will oscillate in phase. Now allow yourself to be

led up the garden path:

� Integrate with RK with dt = 1 for 2000 time units.

� Check your answer with Gear with the default numerical parameters. Verify that

the two methods agree closely.

� Restart with Gear using the Last initial conditions for 2000 more time units. Repeat

several times until you see a new pattern emerge: the cells are now oscillating anti-

phase.

� Run RK for a long time. It will never produce anti-phase oscillations.

� Re-run RK, but perturb the initial condition for v2 to �47.001.

Ponder your observations and try to explain them. Which behavior is the correct one?

Why do the numerical methods di�er?

Moral: The computer doesn't have a brain, but you do.

18. Since a 2nd derivative is a derivative of a derivative, then it is natural to discretize it as

a di�erence of a di�erence. Derive Eq. 49 by starting with Eq. 56 and using

v

xx

(x

j

) =

v

x

�

x

j+

1

2

�

� v

x

�

x

j�

1

2

�

k

19. See also [6]. Verify that the eigenvalues of B are given by (61) by showing that Bu

m

=

�

m

u

m

, m = 1; : : : ; J (recall that B is J by J) where u

m

is the eigenvector

(sinm�x; sin 2m�x; : : : ; sinJm�x); �x = 1=(J + 1):

Motivation: The equation Bu

m

= �u

m

is a discretization of the ODE BVP u

00

= �u on

[0,1] with u(0) = u(1) = 0; the u

m

are the discrete representations of sin(mx) on the

[0; 1], which are the eigenfunctions of the ODE.

20. Solve the steady-state cable equation v

xx

� v = 0 using the boundary value option in

xpp. Let v = 1 at x = 0 and do the cases v = 0 and v

x

= 0 at x = L with L = :5; 1; 2; 3.

This reproduces Fig. 21 in Rall's Handbook of Physiology article. Also do the case of a

constant applied current at x = 0 with a sealed end at x = 1.

21. Solve the time-dependent cable equation v

t

= v

xx

� v, v

x

(0; t) = �1, v

x

(10; t) = 0,

v(x; 0) = 0 using xtc. Write your own input �le or use the �le cable.xtc. Choose

50 grid points, so that k = 0.2. Test the forward Euler stability condition, Eq. 63.

Observe in the unstable cases that the fastest Fourier component dominates after a few

27



time steps. Also try backward Euler, Runge-Kutta, and Gear. You can also use the

steady-state solution obtained with the boundary value solver of xpp as a check on the

solution at t = 20.

22. Minimize the error for either forward or backward Euler for PDEs for a given amount of

work. Take the error to be ah+ bk

2

. The work is inversely proportional to the number

of grid points and to the number of time steps, so estimate it as

C

hk

.

23. The backward di�erentiation methods (Eg. 43) can be written in terms of the backward

di�erence operator,

ry

n

= y

n

� y

n�1

;

and the di�erentiation operator, D. Backward Euler is then

ry

n+1

= hDy

n+1

: (93)

Rewriting Eq. 7 as

e

hD

=

1

1�r

;

Eq. 93 can be expanded formally as

ry

n+1

=

 

r+

r

2

2

+

r

3

3

+ : : :

!

y

n+1

:

Higher-order methods are then obtained by matching more terms of the in�nite series.

The second-order method is

 

r+

r

2

2

!

y

n+1

= hf(y

n+1

):

Show that this is equivalent to

y

n+1

=

4

3

y

n

�

1

3

y

n�1

+

2

3

hf(y

n+1

):

28



References

[1] B. Ermentrout. PhasePlane: The Dynamical Systems Tool Version 3.0. Brooks/Cole,

Paci�c Grove, California, 1990.

[2] R. Feynman. The Feynman Lectures on Physics. Addison-Wesley, Redwood City, CA,

1963.

[3] T. C. Gard. Introduction to Stochastic Di�erential Equations. Marcel Dekker, New York

and Basel, 1988.

[4] C. W. Gear. The numerical integration of ordinary di�erential equations. Math. Comp.,

21:146{156, 1967.

[5] C. W. Gear. Numerical Initial Value Problems in Ordinary Di�erential Equations.

Prentice-Hall, Englewood Cli�s, New Jersey, 1971.

[6] G. H. Golub and J. M. Ortega. Scienti�c Computing and Di�erential Equations. Academic

Press, Boston, 1992.

[7] D. Hansel, G. Mato, C. Meunier, and L. Neltner. On numerical simulations of integrate-

and-�re neural networks. Neural Comput., in press:xx{xx, 1997.

[8] M. Hines. E�cient computation of branched nerve equations. Int. J. Bio-Medical Com-

puting, 15:69{76, 1984.

[9] R. J. MacGregor. Neural and Brain Modeling. Academic Press, San Diego, 1987.

[10] M. V. Mascagni. Numerical methods for neuronal modeling. In C. Koch and I. Segev,

editors, Methods in Neuronal Modeling, pages 439{484. The MIT Press, Cambridge, Mas-

sachusetts, 1989.

[11] M. V. Mascagni. A parallelizing algorithm for computing solutions to arbitrarily branched

cable neuron models. J. Neurosci. Methods, 36:105{114, 1991.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering. Numerical Recipes.

Cambridge University Press, Cambridge, second edition, 1992.

[13] R. D. Richtmyer and K. W. Morton. Di�erence Methods for Initial-Value Problems.

Interscience Publishers, New York, 1967.

[14] A. Sherman and J. Rinzel. Rhythmogenic e�ects of weak electrotonic coupling in neuronal

models. Proc. Natl. Acad. Sci., 89:2471{2474, 1992.

[15] G. D. Smith. Numerical Solution of Partial Di�erential Equations: Finite Di�erence

Methods. Oxford University Press, Oxford, 1985.

29



[16] C. F. Van Loan. Using examples to build computational intuition. SIAM News, 28(8):1,

1995.

[17] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-

Wesley, Redwood City, CA, 1991.

30


